
!O P%:.LFomApproved fN
!ON PAGOMB No. 0704-0188

-t e .eor revewinq instructons. searching existing data sour e-s
-m et earding tisburden estim~ate Of any other aspect of thi

.. ~... '. ..' r te for inforation 0perations and Reports, 15 )efterson.-D-GArojrt(832.088),Washington, 
DC 205031

- . 3 kF~o-P.7 TYPE AND DATES COVERED

______ October 1990 Technical Rept. (Inter; ) 4/1/90-9/3/90
7tl 5 FUNDING %,UMBERS

S%-mmetrv and Local Potential Methods ::N01-0W-46
PE:-0601153N
PR: RRO13-01-01

6 AU~,O.~ __________ _________ -- -- - RR021-02-01

TA: 4131059-01
iBrett I. Dunlap iW:6-13X

7. r J. GCRGANIZATION NAME( , %.t,.,A~ ~E). ~ ~' C~.A

Naval Research Laboratory n.

Washington, DC 20375-5000 Technical Report #4
(Code 6119, C.T. White)

off ice of Naval ResearchAi .

800O North Qincy Street
Arlington, VA 22217-5000 Technical Report #4

(Code 11l3PS, P.P. Schmidt)

11. SUPPLEMENTARY NOTES

Prepared for publication in "Density Functional Theory Approaches to Chemistry"

J.K. Labanowski and J.W. Andzelm (Eds.)

12a. DISTRIBUTION AVAILABILITY STATEMENT . CDI-

This document has been approved for public release and

sales distribution of this document is unlimited.

.3. ABSTRACI .ii-.irr200words)

ISymmnetry-restricted local-density-functional calculation are reviewed and the

resultant curve-crossings analyzed for the case of Al 4 in its singlet manifold at

electronic states. Curve-crossing are avoided using an extension of the functional

Ioccupation number method.

DTIC
ELECTE

S14 SUBJECT TERMS 15 NUMBER OF PAGiS

Local-density-funct ional curve crossing 162IC

17. SECURiTY CLASSIFICATION 18 SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRACT

OF REPORT Of THIS PAGE OF ABSTRACT

UNCLASSIFIED UNCLASSIFIED UiNCLASSIFIED

NS~J 75CO-O, 280-5500 r f' 298 (q, F 29)



OFFICE OF NAVAL RESEARICH

CONTRZACT # N00014-90-WX-24264

R&,T CODE 4131059-01

TECH1NICAL REPORT # 4

Symmnetry and Local Potential Methods

B~rett 1. Dunlap

Theoutical Chlemnistry Section, Code 6119
Naval Research Laboratory

\W\ashlington, D.C. 20375-5000

to be published in
l~nslty Funcional Theory Approaches to Chemistry

.1. 11". Litbanowski ajid J. XV. Andzelm (Eds.)

1 (pi-hicloll III whle or III p~irt is pormit t.C( for any purpose of the United States Goverii-

Thbis docutlil mm meIt haseell aIpproved for pul 1lic release al(1 salle; it's distributiloll is 1111liniit ed.



Mlanuscript submitted to the
Ohio Subercomputer Center Workshop

on Theory and Applications of
Density Functional Theory in Chemistry

to be published in
Density Functional Theory Approaches to Chemistryg

J. K. Labanowski and J. W. Andzelm (Eds.)

Symmnetry and Local Potential Methods

Brett 1. Dunlap

T heoretical Chemistry Section, Code 6119
Naval Research Laboratory

Washington, D.C. 20375-5000, U.S.A.

Aooession For
NTIS GRA&I

OTIC TAB

IJustificatio

AvEllbllty Codes
jAvalf tnd/cr-

Dist special

'KI,



Introduction

The Xa method' and its offspring are becoming more and more im-

portant in quantum chemistry for chemical systems that are too large for

accurate configuration interaction (CI) calculations. All self-consistent-field

(SCF) methods of quantum chemistry method begin with one or more sys-
tems of one-electron equations of the form,

= [_17, + VI( (1)

Invariably V is separated into its one-electron and two-electron parts, the

electron-nuclear interaction potential, Vn, and the electron-electron inter-

action potential, V, I respectively. Only V, distinguishes the various SCF

methods of quantum chemistry. In what are now called local density func-

tional (LDF) methods the electron-electron potential is written,

V V=,(ri) = P(1'2)_2 + Vr(p(ri)), (2)

where the total electron density, p, can be divided into spin-up and spin-

down components, and the expression for the spin-up component,

pT Wr = 71. 1 ( '() (pit(r), (3)

where the nj are the (possibly fractional) number of electrons occupying

each orbital of Eq. 1, contains an implicit summation over orbital index

i. These methods are called LDF's because the exchange and correlation

potential, V,,(p(r l)), at any point in space is constrained to depend only

on the density at the samie point. If we constrain l. to be local and

require the system of equations to salisfy the virial theorem at all extrema

on all 13orn-Oppenheimer potential energy siirfaces, we are led to the Xa
approximation for spin-up orbitals,

V , o (r)). (4)
•~ ,r
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This result follows from simply considering the homogeneous electron gas
at all densities and requires that LDF expressions not include gradients of

the density. The value of a for the homogeneous electron gas based on
variation is two-thirds 2 and based on averaging is one.' For heteronuclear

molecules the best choice is perhaps 0.7.

On the other hand, the KIohn-Sham 2 mapping of the the ground state of
the real system onto the ground state of a fictitious noninteracting set of

electrons, which has the same density as the real system, provides a different

interpretation of these equations. If both the real and noninteracting sets

of electrons are nondegenerate, the mapping is one-to-one and the wave-

function of the noninteracting set of electrons is a single determinant of

one-electron orbitals likely satisfying Eq. 1 for some V. (The counterexam-

ples on-V-eprentabiiity use degeneracy ot one-electron orbitals. 3 - )

If we map the energy of a single-determinant of plane-wave orbitals onto
the essentially exact energy 6 of the homogeneous electron gas as a function

of background positive charge density in the completely spin-paired and

completely spin-polarized extremes, we are led to a different set of LDF's
that typically overbind molecules compared to Xcr and experiment.7 The

best of this other set is perhaps the Perdew-Zunger (PZ) parameterization, 8

which, although it is too complicated to write out here, gives, apart from

slightly rescaling the total energies, I he same description of most nonmag-

netic molecules as does Xa. The reason for almost no difference is that

the one-third power and functions similar to it tremendously deamplify
variations in the nonnegative density itself.

The computational attraction of lEq. 1 and 2 is that V(r) is a local po-
tential, i.e., it is the same for each orbilal \ While all the orbital generating

equations of quantum chemistry can be rendered in the form of Eq. I (if all

else fails by using projection) only with a local potfiitial is l'(r) a single-
valued (orbital independent) function of position. Thus obtaining V(r)

is central to all local potential methods and that problem is straightfor-
ward. Eqs. 1-3 can be solved for any real vector of occupation numbers,

n. All LDF approximations to V,., yield local potentials, but not all local

potentials result from LD: approximiations, as is obvious from the direct

Coulomb term in Eq. 2.

For any density functional expression for V2., the coupled one-electron

equations of motion, Eq. 1. can Ibe integrated to yield the total energy

expression,

E = (T) + (U), (5)

where the total kinetic energy is given )y an expression,
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(T) = - ,, ,() 2 ,()()

containing an implicit summation over the two spin directions through the
index s, and

(U) p, (r) U,(p(r)) dr, (7)

where the one-electron potential and the density functional potential energy
operator, U, are related by an independent variation of (U) with respect to
each spin den-ity at each point,

J VT(p)6pj(r)dr = 6(U) (8)

For any part of V that is approximated as being an LDF, Eq. 8 is precisely
a differentiation,

v DFr d p.,[p,(r)ULDF(p(r))]
dpt(r) (9)

That Eq. 8 does not hold for a nonLDF contribution to V is obvious if cae
considers multiplying Eq. 2 by p(r1 ). In that ca.se the p(ri) aid p(r2) in
the direct Coulomb term are asymctrical; r, is an integration variable while
rl is not.

As is the case with llartree-Fock-based (jilalituin chemical methods, the
analytic basis set approach is the overwhelning favorite in nonmuflin-tin
local potential quantum chemical mnethods, except for lower dimensional
problems such as atoms10 and linear molecules.'- 13 The all-purpose an-
alytic basis set is Gaussiaums 7

.14 in both qualtwmu chemical methods. In
contrast to Ilartree-Fock based methods, computational efficiency dictates
and complicated expressions such as Eq. 4 inspire fitting V in analytic-basis-
set local potential methods." - " If the potential is fit, which is indicated
by placing a bar over the fitted quantity, then the potential energy should

be evaluated,
1 7

(U) Ifp(r) V(p(r)) dr + I(p(),[(p(r)) - V(p(r))dr, (10)

because then the nonfitted denit y only occurs mulilt iplied by the local poten-
tial. Variation with respect to the orbitals (occurring only in the nonfitted

density) gives the local potential term of lie one-electron equations, and
the total energy is insensitive ii first order to changes of the one-electron
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orbitals, provided the fitting procedure follows variationally from this equa-
tion. Eq. 10 yields an energy-stationary way to fit the charge density,7 , s to
fit the direct electron-electron Coulomb potential it.self,' 9 and to fit the Xce
exchange potential.7 ' -0 For the more complicated V,, such as occur in the
PZ functional, Eq. 10 yields variational weights for any numerical fitting
scheme.

21

Independent of how V is determined, it is natural to ask what symmetry
it has and to what extent symmetry can help in local potential calcula-
tions. The system of equations is nonlinear, and therefore its solutions can
and do yield densities that break the symmetry of the collection of nuclear
charges.22 There are three approaches to this important problem. First,
one can accept broken-symmetry solutions. 23- 2s Second, one can restrict
one's attention to density functional methods that yield V having the sym-
metry of the nuclear charges.' - ' Third, one can explicitly symmetrize V
by symmetrizing a broken-symmetry wavefunction before computing the
kinetic energy and density during the SCF process.2"

Empirically, the experimental ionization potential of a core-hole from a

set of symmetry-equivalent atoms is better reproduced in local potential
methods when symmetry is broken and the hole self-consistently localizes
on one of that set of atoms.23,24 Unfortunately, in contrast to ab initio
methods, the variational principle does not also suggest this solution. In
current local potential methods, a localized core hole results in a higher
total energy than a delocalized-hole total energy. When applied to spin,
symmetry-restriction leads to a poor description of Cr 2 ,25'2 6 which has a
singlet electronic ground state but must dissociate into two septet atoms.
All current LDF methods, howcver, a,' not invariaut under rotations in
spin space. 22 -2s Therefore they can ievcr yield spin-densities that trans-
form properly for any magnetic system that has any minority-spin elec-
trons, without further assumptions (such as using the same orbitals for the
two spins). Nevertheless, significant progress is being made in interpreting
solutions in which the density is invariant but the spin densities break the
molecular symmetry 29,30 (spin density waves). Apart from the special case
of core holes, there has been no general at tenpt to interpret broken-spatial-
symmetry solutions (charge density waves) despite the fact that they they
often arise asymptotically in mnolecular di-sociation.' 1,31 In cases where the
real system does not exhibit, charge-density-wave behavior, these broken-
spatial-symmetry errors typically make binding energies uncertain at the
tenth of an electron volt level.

Symimetrizing V removes this uncertainty. (For atoms this means niak-
ing the central field approximation.) Furthermore, a symmetrized V
can be readily taken advantage of in Iinear-commbimmation-of-atomic-orbitals
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(LCAO) local potential computer codes. 22 Synmietrization without further
approximation allows routine LDF calculations on symmetric systems cu-
taining tens of transition metal atoms, -3 2- 34 or larger mixed system such as
C60 and yttrium diplitalocyanine (YC 641132N16 ).35 ,36

In what follows a density functional theory27 ,2 of the broken-spatial-
symmetry problem for singlet electronic states is reviewed. It relies on
the fact the density is to be symmetrized, which, in turn, symmetrizes V
provided it is a function of the density. This symmetrization validates the
fractional occupation number (FON) description of the ground state.37 The
theory contains the mathematics of ab initio configuration interaction. A
good introduction to any discussion of correlation and LDF theory is the
work of Cook and Karplus. 3

8

FON Singlet-State Configuration Interaction

The simplest densities to consider correspond to closed-shell molecules,
in which the density clearly has the symmetry of the molecule. For such
a molecule consider the case where the highest occupied molecular or-
bital (IIOMO) is antibonding and the lowest-unoccupied molecular orbital
(LUMO) is bonding and compress the appropriate internuclear separations
until these orbitals become nearly degenerate (or consider the opposite
case and expand the bonds). For concreteness, consider a 'E+ state of a
homonuclear diatomic molecule and a broken-synimetry IIOMO of mixed
0' and o-,, character,

Sak,,, + hb . (ii)

The g and u components must be orthogonal from svnietry considerations
alone. (If they are also normalized, then the sum of the magnitudes sqiared
of a and b is unity.) Since the kinetic energy operator is invariant under
any spatial symmetry operation, Q's contribution to the kinetic energy,

TO = -aa(xoI1V 2 1yo,) - bb (x . 21,,.), (12)

is diagonal in its components; thus the kinetic energy is the same as that
of a symmetry-restricted FON calculation using n,, = a'a and in = bb.
In contrast to the situation for the overlap and kinetic energy, there is a
difference between the broken-symmetry and symmetry-restricted densities.
The difference is the unsymmetrical expression,

a b u* u,,. + 6a u'. u,,,, (13)

that has larger magnitude on either the left-hand atom or on the right
hand atom depending on the magnitudes and phases of a and b. If, how-
ever, the density is symmetrized by, in this case, averaging the original
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broken-symmetry orbital density with the same density after inverting the
coordinate system, then both orbital densities are the same,

a*a uu + bb u; u .. (14)

Thus symmetrized-broken-symmetry and the FON density-functional cal-
culations are identical. For the above example, both give a charge density
consistent with a 'E+ electronic state.

FON SCF calculations are always slower to converge than fixed-occupa-
tion-number LDF calculations. This is precisely because there is at least
one more degree of freedom involved. Another way to analyze this slow-
ness is to note that for fixed occupation-number calculations, the relevant
gauge of speed of convergence is the gap between the ItOMO and LUMO
energies, 39 whereas FON convergence is also strongly influenced by the
density of states surrounding the IIOMO and LUMO energies. 17 (For the
FON case, the tIOMO must be defined as the highest level that is greater
than half occupied and the LUMO is the lowest level that is less than half
occupied.) Therefre it is best to avoid direct efON calculations ifonc can.

To an excellent approximation the total LDF energy is a quadratic func-

tion of the occupation numbers, 7 because all of its components except Vr,
are, and V, is a very slowly varying function of the density. This quadratic
property is also suggested by the fact. that the exact total energy depends
only on the first and second order density matrices. If the LDF energy is a

quadratic function of the occupation numbers, then the LDF one-electron
eigenvalues, which are the derivatives of the total energy with respect to
the corresponding occupation number, 40

- (15)

must be linear functions of the occupation numbers. In particular, this
approximation means that for the o,, and a. orbitals under consideration,

A( = - (16)

varies linearly with fractional number of electrons, n, transferred from the
or orbital to the or. orbital. The value of this eigenvalue difference for all
numbers of electrons transferred then follows from the lagrange interpolat-

ing formula,

(n -2) (n-O)
A,(,n) = A(- (0 - 2) (2 - 0)

which reduces,
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S=A() - - A,(0)] n

There is an FON solution A(nf) = 0, if and only if

Ac(o) A (2) < 0. (19)

In that case, transferring nj electrons,

2.A(0)

K=A(0) - AE(2) (20)

gives tile FON ground state.

Integrating to get the total energy at the FON solution from the n = 0
limit,

AE A,(n)dn (21)

gives one formula for the FON total energy,

Es0 = E(0) + (22)
AC(O) - AC(2)'

and integrating from the other limit gives another formula,

Ef_ = E(2) + (A)(2)

E + (O) - Ac(2)(

Lagrange interpolating between these two expressions for the FON total
energy gives an FON energy, 2 8

-E(0)Ac(2) + E(2)- (0) - A((0)Ac(2)
El = Ac(O) - A((2) (24)

that connects continuously to the pure state solutions outside the FON

range, geometries for which Eq. 19 is not satisfied.

The FON energy lowering can be viewed as resulting from configuration

interaction between the n = 0 and the n = 2 states, in which the upper
ION energy,

E(0)-AdO) - E(2)Ac(2) + Ac(o0A(2)

Ac(0) - A((2)

lies as much higher in energy above the average of E(O) and E(2) as Et
lies below that average. This approach can be extended to the general
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n x n configuration interaction problem. In such an extension the pure

state energies become diagonal entries in an n x n eigenvalue problem. In
this eigenvalue problem one adds aii off-diagonal matrix between any two
pure states,

/(E, - E.)- (E(0) - E(2)) 2

2 (26)

if and only if the two pure states differ precisely in that two electrons are
transferred from one orbital to another and that the eigenvalue difference
between these two orbitals change according to Eq. 19 in going from the
one state to the other. This postulate gives as its ground state the FON
solution when restricted to only allowing a single pair, but any single pair,
of states to exchange electrons.

A14

The Xa ground state of A14 is a DIh-symmetric rhomnbus with triplet
electronic configuration having a spin-up electron in each of the 9alg and
lbl, orbitals outside a 50-electron 8a22b2 3bub125b2 2 lol2

2g 2 3g5b3u closed-shell
configuration. The 61, orbital is a r orbital with nodal plane in the plane
of the molecule. This agrees with an ab initio description.4 1 The triplet-
state atomization energy (the energy required to dissociate the molecule
into four separated R(3)-syninietrizcd spin-polarized atoms) is 6.52 eV, its

bond distance is 4.99 bohr, and it has a bond angle of 88'.

Much more interesting than the grouid state potential energy surface are
the singlet potential energy surfaces. Fig. la gives the symmetry-restricted
low-lying surfaces in square-planar l)4, syinimetry. These breathing-mode
surfaces are derived from the 51-electron 5a 2la 22a 2u 4b2 2b b e ,2 Ie45C

configuration by anhilating two electrons from the valence a1g, a2u, big,
and b2, orbitals respectively. There are five curve crossings in the figure.

This case is ideal for using Eqs. 24-26 in a 4 x 4 eigenvalue problem. The

result is the solid lines of Fig. lb, where all crossings, of the original, dashed

lines, are avoided.

The most interesting avoided crossing in Fig. lb is the one, at smallest

Al-Al bond distance, between the ao and b' states. It is the weakest. This
is because the a,, orbital, being nodeless, is largely centered on the atomic

centers, like the bi, orbital which, being d, 2 _2-like, has nodes at. the bond

centers for atoms chosen as dey were to lie in the ±x and ±y directions.

Because the densities ar- similar, transferring two electrons between these
two orbitals has the smiallest effect oil their eigenvalue difference, and the
configurations do imt repel each other very much.

This is not th whole story for singlet Al 4 , by any means. Fig. 2a consid-
ers D h-symlrietric bending motioni at. the nmininum Al-Al bond distance
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D 4 h- Symmet~ric Al 4
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Figure 1. Proathiig mode poteiitial eiiergy curves for singlet square-planar

Al 4.
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D 2 h- Symnmetric Al 4
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Figure 2. In-plane bending potential energy curves for singlet Al 4 for Al-Al
bond dlistances of 4.9 bohr.
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of 4.9 bohr in Fig. 1, where the ground state is largely a',. Under this mo-
tion, the a?9 state interacts with two p-like states that have nodes along the

shortest Al-Al second neighbor bond when they cross the a'. state. These
two p-like states are degenerate in D4h symmetry and thus are different,

higher lying in energy, from the states considered in Fig. 1. Fig. 2b gives
the result of using Eqs. 24-26 on the pure states of Fig. 2a.

Conclusions

The work of def.ning local potential, Xa-like, methods for use in quantum

cheziisty is not done. Only pure singlet states were addressed in this work,

and only methods that resulted in no net spin-polarization anywhere in

space is space were used. The problem of coupling spin, fractional occupa-

tion numbers, and symmetry in a complete approximate LDF theory 22' 2 7' 2
3

is unfinished.

This work was supported by the Office of Naval Research and through a

grant of computer time by the Research Advisory Committee of the Naval

Research Laboratory.
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